Phosphorylation of the α subunit of initiation factor 2 correlates with the inhibition of translation following transient cerebral ischaemia in the rat

Author:

Burda J1,Martín M E2,García A2,Alcázar A2,Fando J L3,Salinas M2

Affiliation:

1. Department of Neurochemistry, Institute of Neurobiology, Slovak Academy of Sciences, Kosice, Slovak Republic

2. Departamento de Investigación, Hospital Ramón y Cajal, Ctra. Colmenar km. 9, 28034 Madrid, Spain

3. Departamento de Bioquímica y Biología Molecular, Universidad de Alcalá, 28871 Alcalá de Henares, Spain

Abstract

Rats were subjected to the standard four-vessel occlusion model of cerebral transient ischaemia (vertebral and carotid arteries) for 15 and 30 min. After a 30 min recirculation period, protein synthesis rate, initiation factor 2 (eIF-2) and guanine nucleotide exchange factor (GEF) activities, and the level of phosphorylation of the alpha subunit of eIF-2 (eIF-2 alpha) were determined in the neocortex region of the brain from sham-operated controls and ischaemic animals. Following reversible cerebral ischaemia, the protein synthesis rate, as measured in a cell-free system, was significantly inhibited (70%) in the ischaemic animals. eIF-2 activity, as measured by its ability to form a ternary complex, also decrease parallel to the decrease in protein synthesis. As eIF-2 activity was assayed in the presence of Mg2+ and GTP-regenerating capacity, the decrease in ternary-complex formation indicated the possible impairment of GEF activity. Since phosphorylated eIF-2 [eIF-2(alpha P)] is a powerful inhibitor of GEF, the levels of phosphorylated eIF-2 alpha were determined, and an increase from 7% phosphorylation in sham control rats to 20% phosphorylation in 15 min and 29% phosphorylation in 30 min in ischaemic rats was observed, providing evidence for a tight correlation of phosphorylation of eIF-2 alpha and inhibition of protein synthesis. Moreover, GEF activity measured in the GDP-exchange assay was in fact inhibited in the ischaemic animals, proving that protein synthesis is impaired by the presence of eIF-2(alpha P), which blocks eIF-2 recycling.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 93 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3