N-Myristoylation is essential for protein phosphatases PPM1A and PPM1B to dephosphorylate their physiological substrates in cells

Author:

Chida Toko12,Ando Masakatsu1,Matsuki Tasuku1,Masu Yutaro1,Nagaura Yuko1,Takano-Yamamoto Teruko2,Tamura Shinri1,Kobayashi Takayasu1

Affiliation:

1. Department of Biochemistry, Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan

2. Division of Orthodontics and Dentofacial Orthopedics, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan

Abstract

PPM [metal-dependent protein phosphatase, formerly called PP2C (protein phosphatase 2C)] family members play essential roles in regulating a variety of signalling pathways. While searching for protein phosphatase(s) that act on AMPK (AMP-activated protein kinase), we found that PPM1A and PPM1B are N-myristoylated and that this modification is essential for their ability to dephosphorylate the α subunit of AMPK (AMPKα) in cells. N-Myristoylation was also required for two other functions of PPM1A and PPM1B in cells. Although a non-myristoylated mutation (G2A) of PPM1A and PPM1B prevented membrane association, this relocalization did not likely cause the decreased activity towards AMPKα. In in vitro experiments, the G2A mutants exhibited reduced activities towards AMPKα, but much higher specific activity against an artificial substrate, PNPP (p-nitrophenyl phosphate), compared with the wild-type counterparts. Taken together, the results of the present study suggest that N-myristoylation of PPM1A and PPM1B plays a key role in recognition of their physiological substrates in cells.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3