The porcine taurochenodeoxycholic acid 6alpha-hydroxylase (CYP4A21) gene: evolution by gene duplication and gene conversion

Author:

LUNDELL Kerstin1

Affiliation:

1. Division of Biochemistry, Department of Pharmaceutical Biosciences, University of Uppsala, Box 578, S-751 23 Uppsala, Sweden

Abstract

Porcine taurochenodeoxycholic acid 6α-hydroxylase, cytochrome P450 4A21 (CYP4A21), differs from other members of the CYP4A subfamily in terms of structural features and catalytic activity. CYP4A21 participates in the formation of hyocholic acid, a species-specific primary bile acid in the pig. The CYP4A21 gene was investigated and found to be approx. 13 kb in size and split into 12 exons. The intron–exon organization of the CYP4A21 gene corresponds to that of CYP4A fatty acid hydroxylase genes in other species. Comparison with a genomic segment of a pig CYP4A fatty acid hydroxylase gene (CYP4A24) revealed a sequence identity with CYP4A21 that extends beyond the exons, indicating a common origin by gene duplication. A pronounced sequence identity was found also within the proximal 5´-flanking regions, whereas the patterns of mRNA expression of CYP4A21 and CYP4A fatty acid hydroxylases in pig liver differ. Sequence comparison aiming to elucidate the origin of the unique features of CYP4A21 revealed a region of decreased sequence identity from exon 6 to exon 8, strongly suggesting that gene conversion could have contributed to the evolution of CYP4A21.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3