Electron-paramagnetic-resonance studies of the mechanism of leaf nitrite reductase. Signals from the iron–sulphur centre and haem under turnover conditions

Author:

Cammack Richard1,Hucklesby Dereck P.2,Hewitt Eric J.3

Affiliation:

1. 1Department of Plant Sciences, University of London King's College, 68 Half Moon Lane, London SE24 9JF, U.K.

2. 2Department of Plant Sciences, University of London King's College, 68 Half Moon Lane, London SE24 9JF, U.K.

3. 3University of Bristol, Long Ashton Research Station, Bristol BS18 9AF, U.K.

Abstract

Low-temperature e.p.r. spectra are presented of nitrite reductase purified from leaves of vegetable marrow (Cucurbita pepo). The oxidized enzyme showed a spectrum at g=6.86, 4.98 and 1.95 corresponding to high-spin Fe3+ in sirohaem, which disappeared slowly on treatment with nitrite. The midpoint potential of the sirohaem was estimated to be −120mV. On reduction with Na2S2O4 or Na2S2O4+Methyl Viologen a spectrum at g=2.038, 1.944 and 1.922 was observed, due to a reduced iron–sulphur centre. The midpoint potential of this centre was very low, about −570mV at pH8.1, decreasing with increasing pH. On addition of cyanide, which binds to haem, and Na2S2O4, the iron–sulphur centre became further reduced. We think that this is due to an increased midpoint potential of the iron–sulphur centre. Other ligands to haem, such as CO and the reaction product NH3, had similar but less pronounced effects, and also changed the lineshape of the iron–sulphur signal. Samples were prepared of the enzyme frozen during the reaction with nitrite, Methyl Viologen and Na2S2O4 in various proportions. Signals were interpreted as due to the reduced iron–sulphur centre (with slightly different g values), a haem–NO complex and reduced Methyl Viologen. In the presence of an excess of nitrite, the haem–NO spectrum was more intense, whereas in the presence of an excess of Na2S2O4 it was weaker, and disappeared at the end of the reaction. A reaction sequence is proposed for the enzyme, in which the haem–NO complex is an intermediate, followed by other e.p.r.-silent states, leading to the production of NH4+.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 67 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3