Metabolic control exerted by the 2-oxoglutarate dehydrogenase reaction: a cross-kingdom comparison of the crossroad between energy production and nitrogen assimilation

Author:

Bunik Victoria I.1,Fernie Alisdair R.2

Affiliation:

1. A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia

2. Max-Planck-Institut für Molekulare Planzenphysiologie, Am Mühlenberg 1, 14476 Potsdam–Golm, Federal Republic of Germany

Abstract

Mechanism-based inhibitors and both forward and reverse genetics have proved to be essential tools in revealing roles for specific enzymatic processes in cellular function. Here, we review experimental studies aimed at assessing the impact of OG (2-oxoglutarate) oxidative decarboxylation on basic cellular activities in a number of biological systems. After summarizing the catalytic and regulatory properties of the OGDHC (OG dehydrogenase complex), we describe the evidence that has been accrued on its cellular role. We demonstrate an essential role of this enzyme in metabolic control in a wide range of organisms. Targeting this enzyme in different cells and tissues, mainly by its specific inhibitors, effects changes in a number of basic functions, such as mitochondrial potential, tissue respiration, ROS (reactive oxygen species) production, nitrogen metabolism, glutamate signalling and survival, supporting the notion that the evolutionary conserved reaction of OG degradation is required for metabolic adaptation. In particular, regulation of OGDHC under stress conditions may be essential to overcome glutamate excitotoxicity in neurons or affect the wound response in plants. Thus, apart from its role in producing energy, the flux through OGDHC significantly affects nitrogen assimilation and amino acid metabolism, whereas the side reactions of OGDHC, such as ROS production and the carboligase reaction, have biological functions in signalling and glyoxylate utilization. Our current view on the role of OGDHC reaction in various processes within complex biological systems allows us a far greater fundamental understanding of metabolic regulation and also opens up new opportunities for us to address both biotechnological and medical challenges.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Reference172 articles.

1. Computational systems biology;Kitano;Nature,2002

2. Predictive metabolic engineering: a goal for systems biology;Sweetlove;Plant Physiol.,2003

3. Getting to grips with the plant metabolic network;Sweetlove;Biochem. J.,2008

4. Metabolic control and regulation of the conversion of sucrose to starch in growing potato tubers;Geigenberger;Plant Cell Environ.,2004

5. Understanding the Control of Metabolism;Fell,1997

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3