Metabolomics, machine learning and modelling: towards an understanding of the language of cells

Author:

Kell D.B.1

Affiliation:

1. School of Chemistry, The University of Manchester, Faraday Building, Sackville Street, P.O. Box 88, Manchester M60 1QD, U.K.

Abstract

In answering the question ‘Systems Biology – will it work?’ (which it self-evidently has already), it is appropriate to highlight advances in philosophy, in new technique development and in novel findings. In terms of philosophy, we see that systems biology involves an iterative interplay between linked activities – for instance, between theory and experiment, between induction and deduction and between measurements of parameters and variables – with more emphasis than has perhaps been common now being focused on the first in each of these pairs. In technique development, we highlight closed loop machine learning and its use in the optimization of scientific instrumentation, and the ability to effect high-quality and quasi-continuous optical images of cells. This leads to many important and novel findings. In the first case, these may involve new biomarkers for disease, whereas in the second case, we have determined that many biological signals may be frequency-rather than amplitude-encoded. This leads to a very different view of how signalling ‘works’ (equations such as that of Michaelis and Menten which use only amplitudes, i.e. concentrations, are inadequate descriptors), lays emphasis on the signal processing network elements that lie ‘downstream’ of what are traditionally considered the signals, and allows one simply to understand how cross-talk may be avoided between pathways which nevertheless use common signalling elements. The language of cells is much richer than we had supposed, and we are now well placed to decode it.

Publisher

Portland Press Ltd.

Subject

Biochemistry

Cited by 42 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3