Biosynthesis of the glycolipid anchor of lipophosphoglycan and the structurally related glycoinositolphospholipids from Leishmania major

Author:

Proudfoot L1,Schneider P1,Ferguson M A J1,McConville M J12

Affiliation:

1. Department of Biochemistry, University of Dundee, Dundee DD1 4HN, Scotland, U.K.

2. Deparment of Biochemistry, University of Melbourne, Parkville 3050, Vic., Australia

Abstract

The major macromolecule on the surface of the protozoan parasite Leishmania major is a lipophosphoglycan (LPG) which contains a glycosylphosphatidylinositol glycolipid anchor. This parasite also synthesizes a complex family of abundant low-molecular-mass glycoinositolphospholipids (GIPLs) which are structurally related to the LPG anchor. In this study, L. major promastigotes were metabolically labelled with [3H]GlcN, and the kinetics of incorporation into free glycolipids and the LPG anchor followed to elucidate the pathway of GIPL biosynthesis and possible precursor-product relationships between the GIPLs and LPG. Labelled GIPLs were identified by TLC and by liquid chromatography of the released headgroups, before and after enzymic and chemical cleavage. On the basis of the measured specific radioactivities of the GIPLs, and their kinetics of radiolabelling, we suggest the pathway GlcN-PI-->Man1GlcN-PI (M1)-->Man2GlcN-PI (iM2)-->GalfMan2GlcN-PI (GIPL-1)-->Gal1GalfMan2GlcN-PI (GIPL-2)-->Gal2GalfMan2GlcN-PI (GIPL-3). All of the GIPLs were shown to contain alkylacylglycerol or lyso-alkylglycerol lipid moieties with the exception of the earliest intermediate, glucosaminylphosphatidylinositol (GlcN-PI), which contained both alkylacylglycerol and diacylglycerol. A significant proportion (approx. 50%) of GIPL-3 appeared to be selectively modified by the addition of a Glc-1-PO4 residue to one of the mannose residues (P-GIPL-3). On the basis of the specific radioactivity and kinetics of labelling of GIPL-3 and P-GIPL-3 we suggest that both of these low-abundance species are rapidly utilized as LPG precursors. The turnover of LPG and the GIPLs was also studied by [3H]Gal pulse-chase labelling and cell-surface labelling experiments. Whereas LPG was rapidly shed from the cell surface, consistent with previous studies, the GIPLs (both the total cellular and cell-surface pools) had a much slower turnover. These results suggest that the majority of the GIPLs do not act as LPG precursors and indicate that the cellular levels of these molecules is determined, at least in part, by the rate at which they are shed from the cell surface.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3