Affiliation:
1. Laboratorium voor Chemie der Proteïnen, Vrije Universiteit Brussel, Paardenstraat, 65, B-1640 Sint-Genesius-Rode, Belgium
Abstract
A kinetic and ligand binding study on maize (Zea mays) malate synthase is presented. It is concluded from kinetic measurements that the enzyme proceeds through a ternary-complex mechanism. Michaelis constants (Km,glyoxylate and Km,acetyl-CoA) were determined to be 104 microM and 20 microM respectively. C.d. measurements in the near u.v.-region indicate that a conformational change is induced in the enzyme by its substrate, glyoxylate. From these studies we are able to calculate the affinity for the substrate (Kd,glyoxylate) as 100 microM. A number of inhibitors apparently trigger the same conformational change in the enzyme, i.e. pyruvate, glycollate and fluoroacetate. Another series of inhibitors bearing more bulky groups and/or an extra carboxylic acid also induce a conformational change, which is, however, clearly different from the former one. Limited proteolysis with trypsin results in cleavage of malate synthase into two fragments of respectively 45 and 19 kDa. Even when no more intact malate synthase chains are present, the final enzymic activity still amounts to 30% of the original activity. If trypsinolysis is performed in the presence of acetyl-CoA, the cleavage reaction is appreciably slowed down. The dissociation constant for acetyl-CoA (Kd,acetyl-CoA) was calculated to be 14.8 microM when the glyoxylate subsite is fully occupied by pyruvate and 950 microM (= 50 x Km) when the second subsite is empty. It is concluded that malate synthase follows a compulsory-order mechanism, glyoxylate being the first-binding substrate. Glyoxylate triggers a conformational change in the enzyme and, as a consequence, the correctly shaped binding site for acetyl-CoA is created. Demetallization of malate synthase has no effect on the c.d. spectrum in the near u.v.-region. Moreover, glyoxylate induces the same spectral change in the absence of Mg2+ as in its presence. Nevertheless, malate synthase shows no activity in the absence of the cation. We conclude that Mg2+ is essential for catalysis, rather than for the structure of the enzyme's catalytic site.
Subject
Cell Biology,Molecular Biology,Biochemistry
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献