Biochemical characteristics of human renin expressed in transgenic mice

Author:

Takaori Kazuo1,Kim Shokei2,Fukamizu Akiyoshi3,Sagara Masashi3,Hosoi Masayuki2,Katsuki Motoya4,Murakami Kazuo3,Yamamoto Kenjiro2

Affiliation:

1. Department of Health Science, Osaka Kyoiku University, Osaka, Japan

2. Department of Pharmacology, Osaka City University Medical School, Osaka, Japan

3. Institute of Applied Biochemistry, University of Tsukuba, Tsukuba, Japan

4. Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan

Abstract

1. Biochemical properties of human renin expressed in transgenic mice (hRN8-12 mice) carrying the human renin gene (Fukamizu et al. Biochem Biophys Res Commun 1989; 165: 826–32) were examined. The optimum pH of the enzymic activity against human angiotensinogen was 5.5 for both plasma and renal human renin in the hRN8-12 mice. Plasma concentrations of human active and inactive renin in the plasma of hRN8-12 mice were 16.7 ± 2.8 and 79.9 ± 14.0 pmol of angiotensin 1 h−1 ml−1, respectively, thereby indicating that the predominant form of plasma human renin is the inactive form, as is the case in humans. 2. The molecular masses of plasma human active and inactive renin and renal human active renin in the hRN8-12 mice were estimated to be 46kDa, 48kDa and 44kDa, respectively, as determined by h.p.l.c. on G3,000SW. 3. Human renin in the hRN8-12 mouse kidney was bound to a concanavalin A-Sepharose column, and was eluted with α-methyl-d-mannoside, showing that this renin is glycosylated, as is native human renin. 4. Low sodium treatment of the hRN8-12 mice for 2 weeks increased plasma human active renin, renal human renin and renal human renin mRNA levels by 2.6-, 3.8- and 2.8-fold, respectively. Thus, the biosynthesis and secretion of renal human renin in these transgenic mice are obviously stimulated by sodium depletion.

Publisher

Portland Press Ltd.

Subject

General Medicine

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3