Two-component carnitine monooxygenase from Escherichia coli: functional characterization, inhibition and mutagenesis of the molecular interface

Author:

Piskol Fabian1,Neubauer Kerstin1,Eggers Maurice1,Bode Lisa Margarete1,Jasper Jan1,Slusarenko Alan2,Reijerse Edward3,Lubitz Wolfgang3,Jahn Dieter4,Moser Jürgen1ORCID

Affiliation:

1. 1Institute of Microbiology, Technical University Braunschweig, Braunschweig, Germany

2. 2Institut für Biologie III, RWTH Aachen University, Aachen, Germany

3. 3Max-Planck-Institute for Chemical Energy Conversion, Mülheim an der Ruhr, Germany

4. 4Braunschweig Centre of Integrated Systems Biology, Braunschweig, Germany

Abstract

Abstract Gut microbial production of trimethylamine (TMA) from l-carnitine is directly linked to cardiovascular disease. TMA formation is facilitated by carnitine monooxygenase, which was proposed as a target for the development of new cardioprotective compounds. Therefore, the molecular understanding of the two-component Rieske-type enzyme from Escherichia coli was intended. The redox cofactors of the reductase YeaX (FMN, plant-type [2Fe-2S] cluster) and of the oxygenase YeaW (Rieske-type [2Fe-2S] and mononuclear [Fe] center) were identified. Compounds meldonium and the garlic-derived molecule allicin were recently shown to suppress microbiota-dependent TMA formation. Based on two independent carnitine monooxygenase activity assays, enzyme inhibition by meldonium or allicin was demonstrated. Subsequently, the molecular interplay of the reductase YeaX and the oxygenase YeaW was addressed. Chimeric carnitine monooxygenase activity was efficiently reconstituted by combining YeaX (or YeaW) with the orthologous oxygenase CntA (or reductase CntB) from Acinetobacter baumannii. Partial conservation of the reductase/oxygenase docking interface was concluded. A structure guided mutagenesis approach was used to further investigate the interaction and electron transfer between YeaX and YeaW. Based on AlphaFold structure predictions, a total of 28 site-directed variants of YeaX and YeaW were kinetically analyzed. Functional relevance of YeaX residues Arg271, Lys313 and Asp320 was concluded. Concerning YeaW, a docking surface centered around residues Arg83, Lys104 and Lys117 was hypothesized. The presented results might contribute to the development of TMA-lowering strategies that could reduce the risk for cardiovascular disease.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3