Identification of the predominant glycosaminoglycan-attachment site in soluble recombinant human thrombomodulin: potential regulation of functionality by glycosyltransferase competition for serine474

Author:

Gerlitz B1,Hassell T1,Vlahos C J1,Parkinson J F12,Bang N U12,Grinnell B W1

Affiliation:

1. Department of Cardiovascular Research, Lilly Research Laboratories, Indianapolis, IN 46285, U.S.A.

2. Deparment of Medicine, Indiana University Medical School, Indianapolis, IN 46223, U.S.A.

Abstract

Thrombomodulin (TM) is an endothelial cell thrombin receptor that converts thrombin from a procoagulant to an anticoagulant enzyme. It has previously been shown that TM is expressed in both a high-M(r) form containing chondroitin sulphate and a low-M(r) form lacking this modification. Site-directed mutagenesis of a soluble human TM derivative (TMD1) was employed to determine the attachment site(s) of this functionally important oligosaccharide on the core protein. Although there are four serine residues within the Ser/Thr-rich domain of TMD1 that might support glycosaminoglycan assembly, our analysis demonstrates that the primary site of attachment is at Ser474, and evidence is presented for low levels of attachment at Ser472. It was possible to improve the overall degree of attachment by mutating Ser472 to glutamic acid (so as to conform Ser474 to the xylosyltransferase acceptor consensus acidic-Gly-Ser-Gly-acidic); however, a significant proportion (approx. 35%) of the total TM still lacked a glycosaminoglycan moiety. Mutants that possess a substitution for Ser474 show an increased mobility of their low-M(r) form on SDS/PAGE compared with native TMD1. Isolation and sequencing of a C-terminal peptide demonstrated that this serine is modified in the low-M(r) form of native TMD1. An apparent ‘acceptor consensus overlap’ at Ser474 suggests that the mechanism behind the glycosaminoglycan split of TM may involve a competition for substrate between xylosyltransferase and N-acetylgalactosaminyltransferase.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3