Effect of dual agonists on phosphoinositide pools in WRK-1 cells

Author:

Monaco M E1,Attinasi M1,Koréh K1

Affiliation:

1. Department of Physiology and Biophysics, NYU Medical Center and the Veterans' Administration Hospital, New York, NY 10010, U.S.A.

Abstract

Both vasopressin and bradykinin activate the phosphoinositide cycle in WRK-1 rat mammary tumour cells. When the two agonists are added simultaneously, partial additivity is observed with respect to disappearance of prelabelled phosphoinositides and accumulation of inositol phosphates; no additivity is observed with respect to resynthesis of phosphatidylinositol as assessed by monitoring [32P]Pi incorporation. Lack of complete additivity can be explained, at least in part, by heterologous desensitization. In order to determine whether the two agonists were accessing a common or individual hormone-sensitive phosphoinositide pools, cells were incubated with [32P]Pi in the presence of either vasopressin or bradykinin and subsequently restimulated with the alternative agonist. The lipid pool labelled in the presence of either agonist was sensitive to subsequent treatment by the other ligand, suggesting a common phosphoinositide pool. However, when cells were incubated with [32P]Pi in the absence of agonists, the time course of labelling of the hormone-sensitive pool was different for bradykinin and vasopressin, with that for bradykinin becoming labelled within a much shorter time. Thus although there is a significant overlap between the phosphoinositide pools responding to vasopressin and bradykinin, there is a small fraction of the hormone-sensitive lipid which responds only to bradykinin.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3