Physiological role of AMP-activated protein kinase (AMPK): insights from knockout mouse models

Author:

Viollet B.1,Andreelli F.1,Jørgensen S.B.2,Perrin C.3,Flamez D.4,Mu J.5,Wojtaszewski J.F.P.2,Schuit F.C.4,Birnbaum M.5,Richter E.2,Burcelin R.3,Vaulont S.1

Affiliation:

1. Institut Cochin, Dpt GDPM, 24 rue du faubourg Saint-Jacques 75014 Paris, France

2. Copenhagen Muscle Research Centre, Institute of Exercise and Sports Sciences, Copenhagen, Denmark

3. CNRS UMR 5018, Toulouse, France

4. Diabetes Research Center, Brussels, Belgium

5. Howard Hughes Medical Institute, PA, U.S.A.

Abstract

AMP-activated protein kinase (AMPK) is viewed as a fuel sensor for glucose and lipid metabolism. To understand better the physiological role of the catalytic AMPK subunit isoforms, we generated two knockout mouse models with the α1 (AMPKα1−/−) and α2 (AMPKα2−/−) catalytic subunit genes deleted. No defect in glucose homoeostasis was observed in AMPKα1−/− mice. On the other hand, AMPKα2−/− mice presented high plasma glucose levels and low plasma insulin concentrations in the fed period and during the glucose tolerance test. Nevertheless, in isolated AMPKα2−/− pancreatic islets, glucose-stimulated insulin secretion was not affected. Surprisingly, AMPKα2−/− mice were insulin-resistant and had reduced muscle glycogen synthesis as assessed in vivo by the hyperinsulinaemic euglycaemic clamp procedure. Reduction of insulin sensitivity and glycogen synthesis were not dependent on the lack of AMPK in skeletal muscle, since mice expressing a dominant inhibitory mutant of AMPK in skeletal muscle were not affected and since insulin-stimulated glucose transport in incubated muscles in vitro was normal in AMPKα2−/− muscles. Furthermore, AMPKα2−/− mice have a higher sympathetic tone, as shown by increased catecholamine urinary excretion. Increased adrenergic tone could explain both decreased insulin secretion and insulin resistance observed in vivo in AMPKα2−/− mice. We suggest that the α2 catalytic subunit of AMPK plays a major role as a fuel sensor by modulating the activity of the autonomous nervous system in vivo.

Publisher

Portland Press Ltd.

Subject

Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3