The CBP/p300 TAZ1 domain in its native state is not a binding partner of MDM2

Author:

MATT Theresia1,MARTINEZ-YAMOUT Maria A.1,DYSON H. Jane1,WRIGHT Peter E.1

Affiliation:

1. Department of Molecular Biology and the Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, U.S.A.

Abstract

The transcriptional co-activator CBP [CREB (cAMP-response-element-binding protein)-binding protein] and its paralogue p300 play a key role in the regulation of both activity and stability of the tumour suppressor p53. Degradation of p53 is mediated by the ubiquitin ligase MDM2 (mouse double minute protein) and is also reported to be regulated by CBP/p300. Direct protein–protein interaction between a central domain of MDM2 and the TAZ1 (transcriptional adaptor zinc-binding domain) [C/H1 (cysteine/histidine-rich region 1)] domain of p300 and subsequent formation of a ternary complex including p53 have been reported previously. We expressed and purified the proposed binding domains of HDM2 (human homologue of MDM2) and CBP, and examined their interactions using CD spectroscopy. The binding studies were extended by using natively purified GST (glutathione S-transferase)–p300 TAZ1 and GST–p53 fusion proteins, together with in vitro translated HDM2 fragments, under similar solution conditions to those in previous studies, but omitting added EDTA, which causes unfolding and aggregation of the zinc-binding TAZ1 domain. Comparing the binding properties of the known TAZ1 interaction partners HIF-1α (hypoxia-inducible factor 1), CITED2 (CBP/p300-interacting transactivator with glutamic- and aspartic-rich tail) and STAT2 (signal transducer and activator of transcription 2) with HDM2, our data suggest that TAZ1 in its native state does not serve as a specific recognition domain of HDM2. Rather, unfolded TAZ1 and HDM2 proteins have a high tendency to aggregate, and non-specific protein complexes are formed under certain conditions.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 38 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3