Protein phosphatase-1 is a novel regulator of the interaction between IRBIT and the inositol 1,4,5-trisphosphate receptor

Author:

Devogelaere Benoit1,Beullens Monique2,Sammels Eva1,Derua Rita3,Waelkens Etienne3,van Lint Johan4,Parys Jan B.1,Missiaen Ludwig1,Bollen Mathieu2,De Smedt Humbert1

Affiliation:

1. Laboratory of Molecular and Cellular Signalling, Department of Molecular Cell Biology, Katholieke Universiteit Leuven, Campus Gasthuisberg O/N1, B-3000 Leuven, Belgium

2. Laboratory of Biosignalling and Therapeutics, Department of Molecular Cell Biology, Katholieke Universiteit Leuven, Campus Gasthuisberg O/N1, B-3000 Leuven, Belgium

3. Laboratory of Protein Phosphorylation and Proteomics, Department of Molecular Cell Biology, Katholieke Universiteit Leuven, Campus Gasthuisberg O/N1, B-3000 Leuven, Belgium

4. Laboratory of Molecular Medicine of Protein Kinases, Department of Molecular Cell Biology, Katholieke Universiteit Leuven, Campus Gasthuisberg O/N1, B-3000 Leuven, Belgium

Abstract

IRBIT is an IP3R [IP3 (inositol 1,4,5-trisphosphate) receptor]-binding protein that competes with IP3 for binding to the IP3R. Phosphorylation of IRBIT is essential for the interaction with the IP3R. The unique N-terminal region of IRBIT, residues 1–104 for mouse IRBIT, contains a PEST (Pro-Glu-Ser-Thr) domain with many putative phosphorylation sites. In the present study, we have identified a well-conserved PP1 (protein phosphatase-1)-binding site preceeding this PEST domain which enabled the binding of PP1 to IRBIT both in vitro and in vivo. IRBIT emerged as a mediator of its own dephosphorylation by associated PP1 and, hence, as a novel substrate specifier for PP1. Moreover, IRBIT-associated PP1 specifically dephosphorylated Ser68 of IRBIT. Phosphorylation of Ser68 was required for subsequent phosphorylation of Ser71 and Ser74, but the latter two sites were not targeted by PP1. We found that phosphorylation of Ser71 and Ser74 were sufficient to enable inhibition of IP3 binding to the IP3R by IRBIT. Finally, we have shown that mutational inactivation of the docking site for PP1 on IRBIT increased the affinity of IRBIT for the IP3R. This pinpoints PP1 as a key player in the regulation of IP3R-controlled Ca2+ signals.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Reference36 articles.

1. Inositol trisphosphate and calcium signalling;Berridge;Nature,1993

2. Devogelaere B. Verbert L. Parys J. B. Missiaen L. De Smedt H. The complex regulatory function of the ligand-binding domain of the inositol 1,4,5-trisphosphate receptor Cell Calcium 2007 doi:10.1016/j.ceca.2007.04.005

3. Proteolytic mechanisms leading to disturbed Ca2+ signalling in apoptotic cell death;Verbert;Calcium Binding Proteins,2007

4. The inositol 1,4,5-trisphosphate receptor: transcriptional regulation and modulation by phosphorylation;Krizanova;Gen. Physiol. Biophys.,2003

5. Inositol 1,4,5-trisphosphate receptors as signal integrators;Patterson;Annu. Rev. Biochem.,2004

Cited by 49 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3