The association behaviour of β-lactamases. Sedimentation equilibrium studies in ammonium sulphate solutions

Author:

Braswell E H,Knox J R,Frère J M

Abstract

The beta-lactamases (EC 3.5.2.6) from TEM plasmid RP4, Bacillus licheniformis 749/C and Enterobacter cloacae P99 were studied in solution over a wide concentration range by equilibrium sedimentation. Though crystal symmetries indicate that all three enzymes are potentially dimeric in their crystal forms, in 50 mM-sodium cacodylate at pH 6.5 the enzymes show only a small tendency to associate, indicated by a weight-average Mr (Mw) at 3% (w/v) concentration about 9% greater than that of the monomer. Although the mode of association could not be determined, this extent of association corresponded to a dimerization constant of about 2 × 10(2) M-1. In 2.1 M-(NH4)2SO4 the B. licheniformis enzyme shows some association at concentrations over 1%, displaying an Mw value at 7% concentration about 60% more than the monomer. Under the same conditions Mw for the Entero. P99 enzyme is about 60% greater than the monomer near the solubility limit of about 2%. However, the Mw for the TEM enzyme is over twice that of the monomer at its solubility limit (3%) in 1.7 M-(NH4)2SO4. Fitting the sedimentation data of the TEM enzyme in 1.7 M-(NH4)2SO4 with a dimerization model and an indefinite-isodesmic-association model yielded equilibrium constants of 1.5 × 10(4) and 3.3 × 10(2) M-1 respectively, with the indefinite-isodesmic model giving the better fit. Fitting the data for the other two enzymes yielded values of 1.4 × 10(3) and 1.7 × 10(2) M-1 respectively for the Entero. P99 enzyme and 4.5 × 10(2) and 45 M-1 respectively for the B. licheniformis enzyme. It could not be determined which model was the better fit for these two enzymes. Since none of the beta-lactamases studied here showed strong evidence of the terminal aggregate being a dimer, we conclude that crystalline dimers, if they exist, will not be tightly associated or physiologically significant.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3