Dual-specificity phosphatases: critical regulators with diverse cellular targets

Author:

Patterson Kate I.1,Brummer Tilman2,O'brien Philippa M.1,Daly Roger J.1

Affiliation:

1. Cancer Research Program, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst 2010, Sydney, NSW, Australia

2. Centre for Biological Systems Analysis (ZBSA) and Centre for Biological Signalling Studies (BIOSS), Faculty of Biology, Albert-Ludwigs University of Freiburg, 79104 Freiburg, Germany

Abstract

DUSPs (dual-specificity phosphatases) are a heterogeneous group of protein phosphatases that can dephosphorylate both phosphotyrosine and phosphoserine/phosphothreonine residues within the one substrate. DUSPs have been implicated as major modulators of critical signalling pathways that are dysregulated in various diseases. DUSPs can be divided into six subgroups on the basis of sequence similarity that include slingshots, PRLs (phosphatases of regenerating liver), Cdc14 phosphatases (Cdc is cell division cycle), PTENs (phosphatase and tensin homologues deleted on chromosome 10), myotubularins, MKPs (mitogen-activated protein kinase phosphatases) and atypical DUSPs. Of these subgroups, a great deal of research has focused on the characterization of the MKPs. As their name suggests, MKPs dephosphorylate MAPK (mitogen-activated protein kinase) proteins ERK (extracellular-signal-regulated kinase), JNK (c-Jun N-terminal kinase) and p38 with specificity distinct from that of individual MKP proteins. Atypical DUSPs are mostly of low-molecular-mass and lack the N-terminal CH2 (Cdc25 homology 2) domain common to MKPs. The discovery of most atypical DUSPs has occurred in the last 6 years, which has initiated a large amount of interest in their role and regulation. In the past, atypical DUSPs have generally been grouped together with the MKPs and characterized for their role in MAPK signalling cascades. Indeed, some have been shown to dephosphorylate MAPKs. The current literature hints at the potential of the atypical DUSPs as important signalling regulators, but is crowded with conflicting reports. The present review provides an overview of the DUSP family before focusing on atypical DUSPs, emerging as a group of proteins with vastly diverse substrate specificity and function.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Reference189 articles.

1. Protein kinases and phosphatases: the yin and yang of protein phosphorylation and signaling;Hunter;Cell,1995

2. Protein tyrosine phosphatases in the human genome;Alonso;Cell,2004

3. A brief introduction to the protein phosphatase families;Mustelin,2006

4. Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions;Pearson;Endocr. Rev.,2001

5. Protein tyrosine phosphatases and signalling;Stoker;J. Endocrinol.,2005

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3