Affiliation:
1. Laboratory of Biological Chemistry, Department of Molecular Cell Biology, Catholic University of Leuven, GHB - Herestraat 49, B-3000 Leuven, Belgium
Abstract
We propose the existence in rat liver endoplasmic reticulum (ER) of two asymmetric carrier systems. One system couples UDP-N-acetylglucosamine (UDPGlcNAc) transport to UDP-glucuronic acid (UDPGlcA) transport. When UDPGlcNAc was presented at the cytosolic side of the ER, it then acted as a weak inhibitor of UDPGlcA uptake. By contrast, UDPGlcNAc produced a forceful trans-stimulation of microsomal UDPGlcA uptake when it was present within the lumen of the ER. Likewise, cytosolic UDPGlcA strongly trans-stimulated efflux of intravesicular UDPGlcNAc, whereas cytosolic UDPGlcNAc was ineffective in trans-stimulating efflux of UDPGlcA. A second asymmetric carrier system couples UDPGlcNAc transport to UMP transport. Microsomal UDPGlcNAc influx was markedly stimulated by UMP present inside the microsomes. Such stimulation was only apparent when microsomes had been preincubated and thereby preloaded with UMP, indicating that UMP exerted its effect on UDPGlcNAc uptake by trans-stimulation from the lumenal side of the ER membrane. Contrariwise, extravesicular UMP only minimally trans-stimulated efflux of intramicrosomal UDPGlcNAc. It is widely accepted that UDPGlcNAc acts as a physiological activator of hepatic glucuronidation, but the mechanism of this effect has remained elusive. Based on our findings, we propose a model in which the interaction of two asymmetric transport pathways, i.e. UDPGlcA influx coupled to UDPGlcNAc efflux and UDPGlcNAc influx coupled to UMP efflux, combined with intravesicular metabolism of UDPGlcA, forms a mechanism that leads to stimulation of glucuronidation by UDPGlcNAc.
Subject
Cell Biology,Molecular Biology,Biochemistry
Cited by
41 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献