Thyroid hormone promotes the phosphorylation of STAT3 and potentiates the action of epidermal growth factor in cultured cells

Author:

LIN Hung-Yun12,SHIH Ai12,DAVIS Faith B.12,DAVIS Paul J.12

Affiliation:

1. Molecular and Cellular Medicine Program, Department of Medicine, Albany Medical College, Albany, NY 12208, U.S.A.

2. Veterans Affairs Healthcare Network Upstate New York at Albany, Albany, NY 12208, U.S.A.

Abstract

We have examined the effects of l-thyroxine (T4) on the activation of signal transducer and activator of transcription 3 (STAT3) and on the STAT3-dependent induction of c-Fos expression by epidermal growth factor (EGF). T4, at a physiological concentration of 100 nM, caused tyrosine phosphorylation and nuclear translocation (i.e. activation) of STAT3 in HeLa cells in as little as 10–20 min. Activation by T4 of STAT3 was maximal at 30 min (15±4-fold enhancement; mean±S.E.M.) in 18 experiments. This effect was reproduced by T4–agarose (100 nM) and blocked by CGP 41251, genistein, PD 98059 and geldanamycin, inhibitors of protein kinase C (PKC), protein tyrosine kinase (PTK), mitogen-activated protein kinase (MAPK) kinase and Raf-1 respectively. Tyrosine-phosphorylated MAPK also appeared in nuclear fractions within 10 min of treatment with T4. In the nuclear fraction of T4-treated cells, MAPK immunoprecipitate also contained STAT3. The actions of T4 were similar in HeLa and CV-1 cells, which lack thyroid hormone receptor (TR), and in TR-replete skin fibroblasts (BG-9). T4 also potentiated the EGF-induced nuclear translocation of activated STAT1α and STAT3 and enhanced the EGF-stimulated expression of c-Fos. Hormone potentiation of EGF-induced signal transduction and c-Fos expression was inhibited by CGP 41251, geldanamycin and PD 98059. Therefore the non-genomically induced activation by T4 of STAT3, and the potentiation of EGF by T4, require activities of PKC, PTK and an intact MAPK pathway.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3