Conserved proline-directed phosphorylation regulates SR protein conformation and splicing function

Author:

Keshwani Malik M.1,Aubol Brandon E.1,Fattet Laurent1,Ma Chen-Ting1,Qiu Jinsong2,Jennings Patricia A.3,Fu Xiang-Dong2,Adams Joseph A.1

Affiliation:

1. Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093-0636, U.S.A.

2. Department of Cellular & Molecular Medicine, University of California, San Diego, La Jolla, CA 92093-0636, U.S.A.

3. Department of Chemistry & Biochemistry, University of California, San Diego, La Jolla, CA 92093-0636, U.S.A.

Abstract

The alternative splicing of human genes is dependent on SR proteins, a family of essential splicing factors whose name derives from a signature C-terminal domain rich in arginine–serine dipeptide repeats (RS domains). Although the SRPKs (SR-specific protein kinases) phosphorylate these repeats, RS domains also contain prolines with flanking serines that are phosphorylated by a second family of protein kinases known as the CLKs (Cdc2-like kinases). The role of specific serine–proline phosphorylation within the RS domain has been difficult to assign since CLKs also phosphorylate arginine–serine dipeptides and, thus, display overlapping residue specificities with the SRPKs. In the present study, we address the effects of discrete serine–proline phosphorylation on the conformation and cellular function of the SR protein SRSF1 (SR protein splicing factor 1). Using chemical tagging and dephosphorylation experiments, we show that modification of serine–proline dipeptides broadly amplifies the conformational ensemble of SRSF1. The induction of these new structural forms triggers SRSF1 mobilization in the nucleus and alters its binding mechanism to an exonic splicing enhancer in precursor mRNA. These physical events correlate with changes in the alternative splicing of over 100 human genes based on a global splicing assay. Overall, these studies draw a direct causal relationship between a specific type of chemical modification in an SR protein and the regulation of alternative gene splicing programmes.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 38 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3