Functional analysis of a group A streptococcal glycoside hydrolase Spy1600 from family 84 reveals it is a β-N-acetylglucosaminidase and not a hyaluronidase

Author:

Sheldon William L.12,Macauley Matthew S.3,Taylor Edward J.4,Robinson Charlotte E.1,Charnock Simon J.1,Davies Gideon J.4,Vocadlo David J.3,Black Gary W.1

Affiliation:

1. Biomolecular and Biomedical Research Centre, School of Applied Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, U.K.

2. School of Health, Natural and Social Sciences, University of Sunderland, Sunderland SR1 3SD, U.K.

3. Department of Chemistry, Simon Fraser University, Burnaby, BC, Canada V5A 1S6

4. York Structural Biology Laboratory, Department of Chemistry, University of York, York YO31 5YW, U.K.

Abstract

Group A streptococcus (Streptococcus pyogenes) is the causative agent of severe invasive infections such as necrotizing fasciitis (the so-called ‘flesh eating disease’) and toxic-shock syndrome. Spy1600, a glycoside hydrolase from family 84 of the large superfamily of glycoside hydrolases, has been proposed to be a virulence factor. In the present study we show that Spy1600 has no activity toward galactosaminides or hyaluronan, but does remove β-O-linked N-acetylglucosamine from mammalian glycoproteins – an observation consistent with the inclusion of eukaryotic O-glycoprotein 2-acetamido-2-deoxy-β-D-glucopyranosidases within glycoside hydrolase family 84. Proton NMR studies, structure–reactivity studies for a series of fluorinated analogues and analysis of 1,2-dideoxy-2′-methyl-α-D-glucopyranoso-[2,1-d]-Δ2′-thiazoline as a competitive inhibitor reveals that Spy1600 uses a double-displacement mechanism involving substrate-assisted catalysis. Family 84 glycoside hydrolases are therefore comprised of both prokaryotic and eukaryotic β-N-acetylglucosaminidases using a conserved catalytic mechanism involving substrate-assisted catalysis. Since these enzymes do not have detectable hyaluronidase activity, many family 84 glycoside hydrolases are most likely incorrectly annotated as hyaluronidases.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3