Species-specificity in endoplasmic reticulum signal peptide utilization revealed by proteins from Trypanosoma brucei and Leishmania

Author:

AL-QAHTANI Ahmed1,TEILHET Meredith1,MENSA-WILMOT Kojo1

Affiliation:

1. Department of Cellular Biology, University of Georgia, 724 BioSciences, Athens, GA 30602, U.S.A.

Abstract

N-Terminal signal peptides direct secretory and most membrane proteins into the exocytic pathway at the endoplasmic reticulum. Signal sequences can function across kingdoms. However, our attempts at translocating variant surface glycoprotein (VSG) 117, VSG MVAT7, VSG 221 and BiP from Trypanosoma brucei and gp63 from Leishmania chagasi into canine pancreas microsomes failed. On replacing the signal peptide of VSG 117 with that from yeast prepro-α-mating factor (ppαMF) the chimaeric protein was imported, indicating that the signal sequence of VSG 117 was incompatible with the protein-import machinery of mammalian microsomes. Replacement of the gp63-h-region with a hybrid composed of the N-terminal nine residues from the h-region of gp67 from Autographa californica nuclear polyhedrosis virus and the C-terminal 10 residues from the h-region of gp63 from L. major produced a functional signal peptide. Thus, the h-region of kinetoplastid signal peptides appears to be the subdomain that is non-functional at the mammalian translocon. The calculated biophysical properties and computed discriminant scores (predictive of importability of signal peptides into mammalian microsomes) of the kinetoplastid signal sequences nevertheless are similar to those of ppαMF and Escherichia coliβ-lactamase both of which were imported. These signal peptides are the first collection from one biological family that have been found to fail to function across a species barrier. They indicate that signal peptides are not as universally interchangeable as previously believed. Intriguingly, endoplasmic reticulum signal peptides from Leishmania and Crithidia fasciculata are reminiscent of signal peptides from Gram-positive bacteria.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3