A putative glutathione-binding site in CdZn-metallothionein identified by equilibrium binding and molecular-modelling studies

Author:

Brouwer M1,Hoexum-Brouwer T1,Cashon R E1

Affiliation:

1. Duke University School of the Environment, Marine Laboratory/Marine Biomedical Center, Beaufort, NC 28516, U.S.A.

Abstract

Glutathione (GSH) has been found to form a complex with both vertebrate and invertebrate copper-metallothionein (CuMT) [Freedman, Ciriolo and Peisach (1989) J. Biol. Chem. 264, 5598-5605; Brouwer and Brouwer-Hoexum (1991) Arch. Biochem. Biophys. 290, 207-213]. In this paper we report on the interaction of GSH with CdZnMT-I and CdZnMT-II from rabbit liver and with CdMT-I from Blue crab hepatopancreas. Ultrafiltration experiments showed that all three MTs combined with GSH. The measured binding data for the three MTs could be described by a single binding isotherm. The GSH/MT stoichiometry was 1.4 +/- 0.3 and Kdiss. = 14 +/- 6 microM. Partially Zn-depleted MT does not significantly bind GSH, indicating that the GSH-binding site is located on MT's Zn-containing N-terminal domain. The putative GSH-binding site on rabbit liver MT was investigated using molecular-graphics analysis. A cleft on the MT's N-terminal domain, which has the labile Zn-2 at its base, could easily accommodate GSH. Cysteine-ligand exchange between the terminal (non-bridging) Cys-26, bound to Zn-2, and the cysteine in GSH is stereochemically possible. Based on these considerations a model of MT-GSH was built in which GSH's cysteine replaces Cys-26 as a terminal Zn-2 ligand. This complex was energy-minimized by molecular-mechanics calculations, taking into account computed partial electrostatic charges on all atoms, including Cd and Zn. These calculations showed that the MT-GSH complex was thermodynamically more stable than MT, due to favourable non-bonded, electrostatic and van der Waals interactions. Six hydrogen bonds can form between GSH and MT. The average pairwise root-mean-square deviations (RMSD) of the metals in energy-minimized MT and MT-GSH, compared with the metals in the crystal structure, were 0.0087 +/- 0.0028 nm (0.087 +/- 0.028 A) and 0.0168 +/- 0.0087 nm (0.168 +/- 0.087 A) respectively. The RMSD values for the polypeptide-backbone alpha carbons were 0.0136 +/- 0.0060 nm (0.136 +/- 0.060 A) and 0.0491 +/- 0.0380 nm (0.491 +/- 0.380 A) respectively. No other docking sites for GSH were found. The energy-minimized structure of an MT-2-mercaptoethanol complex was somewhat less stable than the native MT domain, attesting to the specificity of the MT-GSH interaction. The possible physiological significance of the MT-GSH interaction is discussed.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 76 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3