The generation of hydroxyl and alkoxyl radicals from the interaction of ferrous bipyridyl with peroxides

Author:

Winston G W,Harvey W,Berl L,Cederbaum A I

Abstract

Reaction conditions by which the iron-chelate ferrous bipyridyl can be used as a Fenton reagent to generate specifically alkoxyl radical (.OR) from its corresponding alkyl hydroperoxide (ROOH) without producing hydroxyl radical (.OH) as a result of autoxidation are described. In this manner, the relative ability of common .OH-scavenging agents to react with .OH and various .OR species could be assessed. When .OH was generated from H2O2, 4-methylmercapto-2-oxobutyrate, ethanol and benzoate all were oxidized. When .OR (cumoxyl radical, t-butoxyl radical or ethoxyl radical) was generated specifically, each was found to oxidize 4-methylmercapto-2-oxobutyrate and ethanol. In contrast with .OH, however, none of the .OR radicals mediated the decarboxylation of benzoate. Cross-competition studies with the scavengers showed that, in contrast with the .OH-dependent reaction, the .OR-dependent oxidation of 4-methylmercapto-2-oxobutyrate and ethanol was not inhibited by benzoate. Rate constants for ferrous bipyridyl oxidation by ROOH and by H2O2 were found to be essentially the same, and therefore the differential oxidation of the various scavengers was not a reflection of iron-peroxide interaction, but rather an interaction between generated oxy radicals and the scavengers. In contrast with the H2O2 system, catalase did not inhibit the oxidation of 4-methylmercapto-2-oxobutyrate or ethanol by either the cumene hydroperoxide or the t-butyl hydroperoxide system, suggesting that the oxidizing species was not derived from H2O2. These results suggest that benzoate decarboxylation might serve as a more specific probe to detect the presence of .OH than either 4-methylmercapto-2-oxobutyrate or ethanol, which react readily with .OR.

Publisher

Portland Press Ltd.

Cited by 65 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3