Affiliation:
1. Center for Pharmaceutical Biotechnology and Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, 833 S. Wood St. (m/c 874), Chicago, IL 60612-7230, U.S.A.
Abstract
Tryptophan and 5-bromotryptophan (5-BrTrp) are relatively potent inhibitors of sickle-haemoglobin polymerization. The binding sites of these compounds to normal and sickle haemoglobin (HBA and HBS) have been suggested, but not firmly established, through the use of spin-labelled derivatives and/or computer modeling. In the present study we approached the problem by utilizing the technique of photoaffinity labelling. The cyanomet forms of HBA and HBS were subjected to photoaffinity labelling with N alpha-(4-azidotetrafluorobenzoyl)tryptophan and N alpha-(1-ethyl-2-diazomalonyl)-5-bromotryptophan respectively. Both irradiated samples of HBA and HBS were denatured, digested with trypsin, and then separated by reversed-phase HPLC. A labelled tryptic peptide was isolated from the photolabelling of HBS with N alpha-(1-ethyl-2-diazomalonyl)-5-bromotryptophan. The peptide was identified to be Val1(alpha)-Lys7(alpha), with the label attached to Val1(alpha), by virtue of amino acid analysis and sequencing, in conjunction with fast-atom-bombardment MS. The binding mode of N alpha-(1-ethyl-2-diazomalonyl)-5-bromotryptophan is proposed and its relevance to the potency of the 5-BrTrp-based anti-sickling agents is discussed.
Subject
Cell Biology,Molecular Biology,Biochemistry
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献