Biosynthesis of prostaglandins in rabbit kidney medulla. Properties of prostaglandin synthase

Author:

Tai H H1,Tai C L1,Hollander C S1

Affiliation:

1. Endocrine Division, Department of Medicine, New York University School of Medicine, New York, N. Y. 10016, U.S.A.

Abstract

A simple radioactive-substrate assay for prostaglandin synthase (EC 1.14.99.1), which uses t.l.c. to measure simultaneously different prostaglandins synthesized from one precursor substrate, was developed. Rabbit kidney-medulla prostaglandin synthase catalyses the formation of prostaglandin E2, prostaglandin F2α and prostaglandin D2 from arachidonic acid. Fractionation of crude homogenates indicated that the microsomal fraction possessed the highest specific activity of prostaglandin synthase, whereas the soluble fraction exhibited little enzyme activity but rather contained a heat-labile inhibitory macromolecular factor(s), which might be attributed to the serum albumin present in this fraction. The microsomal fraction possessed low intrinsic enzyme activity, but the actvity could be fully stimulated by the presence of both GSH (reduced glutathione) and a phenolic cofactor. Only cysteine could partially replace GSH, whereas other thiols were inactive and some were even inhibitory. A variety of phenolic compounds, including catecholamines, dopamine (3,4-dihydroxyphenethylamine), 5-hydroxytryptamine and quinol, were active in stimulating prostaglandin synthase. In all cases, the stimulation was reflected in the synthesis of all three prostaglandins with ratios not significantly altered by different phenolic cofactors. The synthesis of each of the different prostaglandins appeared to have similar pH optima. The enzyme system was not inhibited by thiol-group inhibitors or a variety of metal chelators except for cyanide and 8-hydroxyquinoline. Characterization of the kidney-medulla prostaglandin synthase system indicated that it exhibited properties similar to those of the enzyme system present in seminal vesicles.

Publisher

Portland Press Ltd.

Cited by 94 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3