Phosphatidylinositol 3,4,5-trisphosphate is formed from phosphatidylinositol 4,5-bisphosphate in thrombin-stimulated platelets

Author:

Carter A N1,Huang R2,Sorisky A3,Downes C P1,Rittenhouse S E2

Affiliation:

1. Department of Biochemistry, University of Dundee, Dundee DD1 4HN Scotland

2. Deparment of Pharmacology, Jefferson Cancer Institute and Cardeza Foundation for Hematologic Research, Thomas Jefferson University, Philadelphia, PA 19107

3. Department of Medicine, University of Vermont, Burlington, VT 05405, U.S.A.

Abstract

Platelets accumulate PtdIns(3,4,5)P3 and PtdIns(3,4)P2 in response to thrombin and thrombin-receptor-directed peptide in a GTP-dependent manner. These phosphoinositides are considered to be mediators of signaling events in a variety of cells. We have examined the metabolic route by which PtdIns(3,4,5)P3 and PtdIns(3,4)P2 are synthesized by briefly (10 min) incubating platelets with high activities of [32P]Pi, followed by 20 or 60 s exposure to thrombin, and analysing the relative radioactivities of the individual phosphate groups in the resulting labelled PtdIns(3,4,5)P3 and PtdIns(3,4)P2. The phosphate group possessing the highest specific activity under such non-equilibrium labelling conditions indicates the last one added in a metabolic sequence. The thrombin-stimulated rate of labelling of PtdIns(3,4)P2 was significantly slower than that of PtdIns(3,4,5)P3. Increased labelled PtdIns3P was not detected within 60 s. The measured relative radioactivities decreased in the order 3 > 5 > 4 >> 1 for PtdIns(3,4,5)P3 and 3 > 4 >> 1 for PtdIns(3,4)P2. On the basis of the results of both rate-of-labelling and specific radioactivity analyses we conclude that PtdIns(3,4,5)Pa is formed by 3-OH phosphorylation of PtdIns(4,5)P2, whereas PtdIns(3,4)P2, may be formed by 3-OH phosphorylation of PtdIns4P and/or dephosphorylation of PtdIns(3,4,5)P3. These findings point to the activation of phosphoinositide 3-kinase as a critical receptor-regulated step in thrombin-stimulated platelets.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 50 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3