Affiliation:
1. Department of Environmental and Molecular Toxicology, North Carolina State University, Campus Box 7633, Raleigh, NC 27695-7633, U.S.A.
Abstract
An increase in intracellular Ca2+ is one of the initiating events in T-cell activation. A calcium-mediated signalling cascade in T-cells involves activation of calcineurin and the dephosphorylation and translocation of NFAT (nuclear factor of activated T-cells), resulting in the transcriptional activation of target genes such as IL-2 (interleukin-2). In the present study, we found that increased intracellular calcium leads to induction of the antioxidant protein ferritin H. We previously reported that the ferritin H gene is transcriptionally activated under oxidative stress conditions through an ARE (antioxidant-responsive element). The facts that the ferritin H ARE contains a composite AP-1 (activator protein 1) site and that NFAT collaborates with AP-1 transcription factors led us to test whether calcium-activated NFAT is involved in the ferritin H induction through the ARE. Treatment of Jurkat T-cells with the calcium ionophore, ionomycin, increased ferritin H mRNA and protein expression. Although NFAT translocated to the nucleus and bound a consensus NFAT sequence located in the IL-2 promoter after ionomycin treatment, it did not activate ferritin H transcription despite the presence of a putative NFAT-binding sequence in the ferritin H ARE. In addition, the calcineurin inhibitor cyclosporin A treatment blocked ionomycin-mediated NFAT nuclear translocation but failed to abrogate the increase in ferritin H mRNA. Analysis of mRNA stability after actinomycin D treatment revealed that ionomycin prolongs ferritin H mRNA half-life. Taken together, these results suggest that ionomycin-mediated induction of ferritin H may occur in an NFAT-independent manner but through post-transcriptional stabilization of the ferritin H mRNA.
Subject
Cell Biology,Molecular Biology,Biochemistry
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献