Affiliation:
1. Dipartimento di Biologia, Università degli Studi di Padova, 35121 Padova, Italy
Abstract
Abstract
The regulation of photosynthesis is crucial to efficiently support the assimilation of carbon dioxide and to prevent photodamage. One key regulatory mechanism is the pseudo-cyclic electron flow (PCEF) mediated by class-C flavodiiron proteins (FLVs). These enzymes use electrons coming from Photosystem I (PSI) to reduce oxygen to water, preventing over-reduction in the acceptor side of PSI. FLVs are widely distributed among organisms performing oxygenic photosynthesis and they have been shown to be fundamental in many different conditions such as fluctuating light, sulfur deprivation and plant submersion. Moreover, since FLVs reduce oxygen they can help controlling the redox status of the cell and maintaining the microoxic environment essential for processes such as nitrogen fixation in cyanobacteria. Despite these important roles identified in various species, the genes encoding for FLV proteins have been lost in angiosperms where their activity could have been at least partially compensated by a more efficient cyclic electron flow (CEF). The present work reviews the information emerged on FLV function, analyzing recent structural data that suggest FLV could be regulated through a conformational change.
Subject
Cell Biology,Molecular Biology,Biochemistry
Cited by
28 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献