Molecular cloning of a human cannabinoid receptor which is also expressed in testis

Author:

Gérard C M1,Mollereau C2,Vassart G13,Parmentier M1

Affiliation:

1. Institut de Recherche Interdisciplinaire, Université Libre de Bruxelles, Belgium.

2. Laboratoire de Pharmacologie et de Toxicologie fondamentales du CNRS, 205 route de Narbonne, 31077 Toulouse, France.

3. Service de Génétique médicale, Faculté de Médecine, Université Libre de Bruxelles, Campus Erasme, 808 route de Lennik, 1070 Bruxelles, Belgium.

Abstract

A cDNA clone encoding a receptor protein which presents all the characteristics of a guanine-nucleotide-binding protein (G-protein)-coupled receptor was isolated from a human brain stem cDNA library. The probe used (HGMP08) was a 600 bp DNA fragment amplified by a low-stringency PCR, using human genomic DNA as template and degenerate oligonucleotide primers corresponding to conserved sequences amongst the known G-protein-coupled receptors. The deduced amino acid sequence encodes a protein of 472 residues which shares 97.3% identity with the rat cannabinoid receptor cloned recently [Matsuda, Lolait, Brownstein, Young & Bronner (1990) Nature (London) 346, 561-564]. Abundant transcripts were detected in the brain, as expected, but lower amounts were also found in the testis. The same probe was used to screen a human testis cDNA library. The cDNA clones obtained were partially sequenced, demonstrating the identity of the cannabinoid receptors expressed in both tissues. Specific binding of the synthetic cannabinoid ligand [3H]CP55940 was observed on membranes from Cos-7 cells transfected with the recombinant receptor clone. In stably transfected CHO-K1 cell lines, cannabinoid agonists mediated a dose-dependent and stereoselective inhibition of forskolin-induced cyclic AMP accumulation. The ability to express the human cannabinoid receptor in mammalian cells should help in developing more selective drugs, and should facilitate the search for the endogenous cannabinoid ligand(s).

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3