Differential regulation of γ-glutamylcysteine synthetase heavy and light subunit gene expression

Author:

CAI Jiaxin1,HUANG Zong-Zhi1,LU Shelly C.1

Affiliation:

1. Division of Gastrointestinal and Liver Diseases, Department of Medicine, University of Southern California School of Medicine, Los Angeles, CA 90033, U.S.A.

Abstract

γ-Glutamylcysteine synthetase (GCS) is the rate-limiting enzyme in the biosynthesis of glutathione and is composed of a heavy and a light subunit. Although the heavy subunit is enzymically active alone, the light subunit plays an important regulatory role by making the holoenzyme function more efficiently. In the current study we examined whether conditions which are known to influence gene expression of the heavy subunit also influence that of the light subunit, and the mechanisms involved. Treatment of cultured rat hepatocytes with hormones such as insulin and hydrocortisone, or plating hepatocytes under low cell density increased the steady-state mRNA level of the heavy subunit only. Treatment with diethyl maleate (DEM), buthionine sulphoximine (BSO) and t-butylhydroquinone (TBH) increased the steady state mRNA level and gene transcription rates of both subunits. These treatments share in common their ability to induce oxidative stress and activate nuclear factor κB (NF-κB). Treatment with protease inhibitors 7-amino-1-chloro-3-tosylamido-2-heptanone (TLCK) or L-1-tosylamido-2-phenylethyl chloromethyl ketone (TPCK) had no influence on the basal NF-κB and GCS subunit mRNA levels, but blocked the activation of NF-κB by DEM, BSO and TBH, and the increase in GCS heavy subunit mRNA level by BSO and TBH. On the other hand, the DEM-, BSO- and TBH-induced increase in GCS light-subunit mRNA level was unaffected by TLCK and TPCK. Thus only the heavy subunit is hormonally regulated and growth sensitive, whereas both subunits are regulated by oxidative stress. Signalling through NF-κB is involved only in the oxidative-stress-mediated changes in the heavy subunit gene expression.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3