Differential regulation and expression of hyaluronan synthases in human articular chondrocytes, synovial cells and osteosarcoma cells

Author:

RECKLIES Anneliese D.1,WHITE Chantal1,MELCHING Lee2,ROUGHLEY Peter J.2

Affiliation:

1. Joint Diseases Laboratory, Shriners Hospital for Children, 1529 Cedar Avenue, Montreal, Quebec, Canada H3G 1A6

2. Genetics Unit, Shriners Hospital for Children, 1529 Cedar Avenue, Montreal, Quebec, Canada H3G 1A6

Abstract

Recently three isoforms of hyaluronan synthase (HAS), the enzyme responsible for hyaluronate/hyaluronan (HA) biosynthesis, have been cloned, allowing us to study their expression pattern. Our objective was to determine which of the HAS isoenzymes were expressed in human articular chondrocytes, synovial fibroblasts and osteosarcoma cells, whether their expression could be modulated by growth factors (insulin-like growth factor-1, basic fibroblast growth factor and transforming growth factor (TGF-β1) and cytokines [interleukin 1β1 (IL-1β)], and whether changes in the rate of HA synthesis by the cells correlated with changes in mRNA levels for one or more of the HAS isoforms. All three HAS isoforms were found to be expressed in the cultured cells analysed in this study, although the relative proportions varied for each cell type. HAS2 mRNA was usually predominant in chondrocytes, whereas synovial cells contained increased amounts of HAS1. HAS3 was always the least abundant message. The rapidly growing osteosarcoma cells contained almost exclusively HAS2 message. HAS usage in uncultured cartilage and synovial tissues was similar to that in the cultured cells, with HAS2 message being the predominant species in cartilage and HAS1 usually being the predominant species in synovium. HA synthesis was stimulated by the growth factors, but the extent of the response was cell-type specific. Synovial cells responded particularly well to IL-1β, and showed a unique synergistic response when IL-1β was used in combination with TGF-β1. This response was much reduced in articular chondrocytes and absent in the osteosarcoma cells. Analysis of changes in HAS message levels indicated that there was often no correlation with the changes in HA secretion following exposure to growth factors. Although HAS-1 mRNA was increased in synovial cells after exposure to TGF-β1/IL-1β, the magnitude of the change was far less than the effect on HA synthesis. Our data thus suggest that HAS gene usage is tissue specific, and the regulation by growth factors is unique for each HAS gene and is further modulated by cell-specific factors. In addition, regulation of HA biosynthesis appears to be multi-faceted, with control of HAS gene expression and mRNA levels being only one aspect of this process.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3