Down-regulation of the insulin signaling pathway by SHC may correlate with congenital heart disease in Chinese populations

Author:

Luo Zhiling12,Xu Longjiang1ORCID,Lu Jiang3,Shen Yan2,Tang Yongyan4,Wang Xiuyun1,Wu Yilin1,Sun Hao1ORCID,Guo Tao5

Affiliation:

1. The Department of Medical Genetics, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China

2. The Department of Ultrasound, Fuwai Yunnan Cardiovascular Hospital, Kunming, China

3. The Department of Cardial Surgery, Fuwai Yunnan Cardiovascular Hospital, Kunming, China

4. The Department of Structural Heart Disease, Fuwai Yunnan Cardiovascular Hospital, Kunming, China

5. The Department of Cardiology, Fuwai Yunnan Cardiovascular Hospital, Kunming, China

Abstract

Abstract Background/Aims: Congenital heart disease (CHD) is one of the most common and severe congenital defects. The incidence of fetal cardiac malformation is increased in the context of maternal gestational diabetes mellitus (GDM). Therefore, we wanted to determine whether abnormalities in the insulin signaling pathway are associated with the occurrence of nonsyndromic CHD (ns-CHD). Methods: We used digital gene expression profiling (DGE) of right atrial myocardial tissue samples from eight ns-CHD patients and four controls. The genes potentially associated with CHD were validated by real-time fluorescence quantitative PCR analysis of right atrial myocardial tissues from 37 patients and 10 controls and the H9C2 cell line. Results: The results showed that the insulin signaling pathway, which is mediated by the SHC gene family, was inhibited in the ns-CHD patients. The expression levels of five genes (PTPRF, SHC4, MAP2K2, MKNK2, and ELK1) in the pathway were significantly down-regulated in the patients’ atrial tissues (P<0.05 for all). In vitro, the H9C2 cells cultured in high glucose (33 mmol/l) expressed less SHC4, MAP2K2, and Elk-1 than those cultured in low glucose (25 mmol/l). Furthermore, the high glucose concentration down-regulated the 25 genes associated with blood vessel development based on Gene Ontology (GO) term enrichment analyses of RNA-seq data. Conclusion: We considered that changes in the insulin signaling pathway mediated by SHC might be involved in the heart development process. This mechanism might account for the increase in the incidence of fetal cardiac malformations in the context of GDM.

Publisher

Portland Press Ltd.

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3