The mechanism by which molecules containing the HIV gp41 core-binding motif HXXNPF inhibit HIV-1 envelope glycoprotein-mediated syncytium formation

Author:

Huang Jing-He1,Yang Heng-Wen1,Liu Shuwen2,Li Jing1,Jiang Shibo32,Chen Ying-Hua1

Affiliation:

1. Laboratory of Immunology, Department of Biology, Tsinghua University, Protein Science Laboratory of the Ministry of Education, Beijing 100084, People's Republic of China

2. Antiviral Research Center, Southern Medical University, Guangzhou 510515, People's Republic of China

3. Laboratory of Viral Immunology, Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY 10021, U.S.A.

Abstract

The HIV-1 gp41 (glycoprotein 41) core plays a critical role in fusion between the viral and target cell membranes. We previously identified a gp41 core-binding motif, HXXNPF, by screening the phage display peptide libraries. In the present study, we elucidated the mechanism of action of HXXNPF motif-containing molecules of different sizes, including the phage clone L7.8 (a selected positive phage clone), L7.8-g3p* (a 10–kDa fragment of the gene 3 protein) and JCH-4 (a peptide containing 13 residues of L7.8-g3p*), regarding their respective binding abilities to the six-helix bundle and inhibition on syncytium formation at different temperatures. We found that all of the HXXNPF motif-containing molecules could bind to the gp41 core, and that their binding sites may be located in the N-helix domain. L7.8-g3p* and JCH-4 effectively inhibited HIV-1 Env (envelope glycoprotein)-mediated syncytium formation at 37 °C, while the phage clone L7.8 showed no inhibition under the same conditions. However, at suboptimal temperature (31.5 °C), all of these HXXNPF motif-containing molecules were capable of inhibiting syncytium formation. These results suggest that these HXXNPF motif-containing molecules mainly bind to the gp41 core and stop the fusion process mediated by the fusion-active core, resulting in inhibition of HIV-1 fusion and entry. The HXXNPF motif-containing molecules may be used as probes for studying the role of the HIV-1 gp41 core in the late stage of the membrane-fusion process.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Reference27 articles.

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3