Glutamine and glucose metabolism during thymocyte proliferation. Pathways of glutamine and glutamate metabolism

Author:

Brand K

Abstract

Energy metabolism in proliferating cultured rat thymocytes was compared with that of freshly prepared non-proliferating resting cells. Cultured rat thymocytes enter a proliferative cycle after stimulation by concanavalin A and Lymphocult T (interleukin-2), with maximal rates of DNA synthesis at 60 h. Compared with incubated resting thymocytes, glucose metabolism by incubated proliferating thymocytes was 53-fold increased; 90% of the amount of glucose utilized was converted into lactate, whereas resting cells metabolized only 56% to lactate. However, the latter oxidized 27% of glucose to CO2, as opposed to 1.1% by the proliferating cells. Activities of hexokinase, 6-phosphofructokinase, pyruvate kinase and aldolase in proliferating thymocytes were increased 12-, 17-, 30- and 24-fold respectively, whereas the rate of pyruvate oxidation was enhanced only 3-fold. The relatively low capacity of pyruvate degradation in proliferating thymocytes might be the reason for almost complete conversion of glucose into lactate by these cells. Glutamine utilization by rat thymocytes was 8-fold increased during proliferation. The major end products of glutamine metabolism are glutamate, aspartate, CO2 and ammonia. A complete recovery of glutamine carbon and nitrogen in the products was obtained. The amount of glutamate formed by phosphate-dependent glutaminase which entered the citric acid cycle was enhanced 5-fold in the proliferating cells: 76% was converted into 2-oxoglutarate by aspartate aminotransferase, present in high activity, and the remaining 24% by glutamate dehydrogenase. With resting cells the same percentages were obtained (75 and 25). Maximal activities of glutaminase, glutamate dehydrogenase and aspartate aminotransferase were increased 3-, 12- and 6-fold respectively in proliferating cells; 32% of the glutamate metabolized in the citric acid cycle was recovered in CO2 and 61% in aspartate. In resting cells this proportion was 41% and 59% and in mitogen-stimulated cells 39% and 65% respectively. Addition of glucose (4 mM) or malate (2 mM) strongly decreased the rates of glutamine utilization and glutamate conversion into 2-oxoglutarate by proliferating thymocytes and also affected the pathways of further glutamate metabolism. Addition of 2 mM-pyruvate did not alter the rate of glutamine utilization by proliferating thymocytes, but decreased the rate of metabolism beyond the stage of glutamate significantly. Formation of acetyl-CoA in the presence of pyruvate might explain the relatively enhanced oxidation of glutamate to CO2 (56%) by proliferating thymocytes.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 170 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3