Kinetics and product analysis of the reaction catalysed by recombinant homoaconitase from Thermus thermophilus

Author:

Jia Yunhua1,Tomita Takeo2,Yamauchi Kazuma2,Nishiyama Makoto2,Palmer David R. J.1

Affiliation:

1. Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, SK, S7N 5C9, Canada

2. Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan

Abstract

HACN (homoaconitase) is a member of a family of [4Fe-4S] cluster-dependent enzymes that catalyse hydration/dehydration reactions. The best characterized example of this family is the ubiquitous ACN (aconitase), which catalyses the dehydration of citrate to cis-aconitate, and the subsequent hydration of cis-aconitate to isocitrate. HACN is an enzyme from the α-aminoadipate pathway of lysine biosynthesis, and has been identified in higher fungi and several archaea and one thermophilic species of bacteria, Thermus thermophilus. HACN catalyses the hydration of cis-homoaconitate to (2R,3S)-homoisocitrate, but the HACN-catalysed dehydration of (R)-homocitrate to cis-homoaconitate has not been observed in vitro. We have synthesized the substrates and putative substrates for this enzyme, and in the present study report the first steady-state kinetic data for recombinant HACN from T. thermophilus using a (2R,3S)-homoisocitrate dehydrogenase-coupled assay. We have also examined the products of the reaction using HPLC. We do not observe HACN-catalysed ‘homocitrate dehydratase’ activity; however, we have observed that ACN can catalyse the dehydration of (R)-homocitrate to cis-homoaconitate, but HACN is required for subsequent conversion of cis-homoaconitate into homoisocitrate. This suggests that the in vivo process for conversion of homocitrate into homoisocitrate requires two enzymes, in simile with the propionate utilization pathway from Escherichia coli. Surprisingly, HACN does not show any activity when cis-aconitate is substituted for the substrate, even though other enzymes from the α-aminoadipate pathway can accept analogous tricarboxylic acid-cycle substrates. The enzyme shows no apparent feedback inhibition by L-lysine.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3