NABP1, a novel RORγ-regulated gene encoding a single-stranded nucleic-acid-binding protein

Author:

Kang Hong Soon1,Beak Ju Youn1,Kim Yong-Sik1,Petrovich Robert M.2,Collins Jennifer B.3,Grissom Sherry F.3,Jetten Anton M.1

Affiliation:

1. Cell Biology Section, Laboratory of Respiratory Biology, Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, U.S.A.

2. Protein Expression Core Facility, Laboratory of Structural Biology, Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, U.S.A.

3. Microarray Group, Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, U.S.A.

Abstract

RORγ2 (retinoid-related orphan receptor γ2) plays a critical role in the regulation of thymopoiesis. Microarray analysis was performed in order to uncover differences in gene expression between thymocytes of wild-type and RORγ−/− mice. This analysis identified a novel gene encoding a 22 kDa protein, referred to as NABP1 (nucleic-acid-binding protein 1). This subsequently led to the identification of an additional protein, closely related to NABP1, designated NABP2. Both proteins contain an OB (oligonucleotide/oligosaccharide binding) motif at their N-terminus. This motif is highly conserved between the two proteins. NABP1 is highly expressed in the thymus of wild-type mice and is greatly suppressed in RORγ−/− mice. During thymopoiesis, NABP1 mRNA expression is restricted to CD4+CD8+ thymocytes, an expression pattern similar to that observed for RORγ2. These observations appear to suggest that NABP1 expression is regulated either directly or indirectly by RORγ2. Confocal microscopic analysis showed that the NABP1 protein localizes to the nucleus. Analysis of nuclear proteins by size-exclusion chromatography indicated that NABP1 is part of a high molecular-mass protein complex. Since the OB-fold is frequently involved in the recognition of nucleic acids, the interaction of NABP1 with various nucleic acids was examined. Our results demonstrate that NABP1 binds single-stranded nucleic acids, but not double-stranded DNA, suggesting that it functions as a single-stranded nucleic acid binding protein.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3