Non-esterified fatty acids impair endothelium-dependent vasodilation in rat mesenteric resistance vessels

Author:

SAINSBURY Christopher A. R.1,SATTAR Naveed2,CONNELL John M. C.1,HILLIER Chris3,PETRIE John R.4

Affiliation:

1. Division of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, U.K.

2. Department of Pathological Biochemistry, Glasgow Royal Infirmary, Glasgow, U.K.

3. Vascular Assessment Group, Glasgow Caledonian University, Glasgow, U.K.

4. Department of Medicine, University of Dundee, Dundee, U.K.

Abstract

Elevated circulating levels of NEFAs (non-esterified fatty acids) are associated with states of insulin resistance and increased risk of vascular disease. Previous animal and human studies have demonstrated NEFA-induced endothelial dysfunction of large conduit arteries, reversible by the antioxidant ascorbic acid. We therefore investigated the effect of NEFAs on carbachol-induced endothelium-dependent vasodilation of rat resistance arteries in vitro using the technique of wire myography. In addition, we investigated the effect of co-incubation of NEFAs and ascorbic acid. Cumulative concentration–response curves to carbachol (endothelium-dependent vasodilation) and SNAP (S-nitroso-N-acetyl-DL-penicillamine; endothelium-independent vasodilation) were constructed. Those to carbachol were repeated following a 30 min incubation with either oleic acid (10−4 M) or palmitic acid (10−4 M), demonstrating significant impairment of endothelium-dependent vasodilation with both [P<0.05, comparison of pD2 values (the negative log concentration of agonist required to effect a 50% response)]. A cumulative concentration–response curve to carbachol was repeated following co-incubation with palmitic acid (10−4 M) and the antioxidant ascorbic acid (10−5 M), demonstrating an abolition of the previously observed endothelial dysfunction induced by palmitic acid. There was no impairment of vasodilation to SNAP following NEFA incubation. We conclude that NEFAs directly impair endothelial function in rat resistance arteries via an increase in oxidative stress at the vascular endothelium.

Publisher

Portland Press Ltd.

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3