Expression of indoleamine 2,3-dioxygenase and tryptophan 2,3-dioxygenase in early concepti

Author:

SUZUKI Sachiko12,TONÉ Shigenobu1,TAKIKAWA Osamu3,KUBO Toshikazu4,KOHNO Ichiro2,MINATOGAWA Yohsuke1

Affiliation:

1. Department of Biochemistry, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama 701-0192, Japan,

2. Department of Obstetrics and Gynecology, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama 701-0192, Japan,

3. Australian Cataract Research Foundation, The University of Wollongong, Wollongong, NSW 2522, Australia

4. Department of Orthopedic Surgery, Kyoto Prefectural University of Medicine, Kajiicho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-0841, Japan

Abstract

Indoleamine 2,3-dioxygenase (IDO)-initiated tryptophan degradation in the placenta has been implicated in the prevention of the allogeneic fetus rejection [Munn, Zhou, Attwood, Bondarev, Conway, Marshall, Brown, and Mellor (1998) Science 281, 1191-1193]. To determine how IDO is associated with the development of the fetus and placenta, the time course of IDO expression (tryptophan-degrading activity, IDO protein and IDO mRNA) in the embryonic and extra-embryonic tissues as well as maternal tissues of mice was examined. A high tryptophan-degrading activity was detected in early concepti on days 6.5 and 7.5, whereas IDO protein and its mRNA were not expressed during early gestation, but appeared 2-3 days later, lasted for about 3 days and declined rapidly thereafter. The expression of IDO basically coincided with the formation of the placenta. On the contrary, the early tryptophan-degrading activity was due to gene expression of tryptophan 2,3-dioxygenase (TDO), as shown by Northern and Western analysis. These findings indicate that IDO is transiently expressed in the placenta but that the expression does not last until birth, and that the IDO expression is preceded by expression of another tryptophan-degrading enzyme, TDO, in the maternal and/or embryonic tissues in early concepti.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 57 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3