Affiliation:
1. Department of Obstetrics and Gynecology, College of Medicine, University of Cincinnati, PO Box 670526, Cincinnati, OH 45267, U.S.A.
Abstract
Adverse influences during fetal life alter the structure and function of distinct cells, organ systems or homoeostatic pathways, thereby ‘programming’ the individual for an increased risk of developing cardiovascular disease and diabetes in adult life. Fetal programming can be caused by a number of different perturbations in the maternal compartment, such as altered maternal nutrition and reduced utero–placental blood flow; however, the underlying mechanisms remain to be fully established. Perturbations in the maternal environment must be transmitted across the placenta in order to affect the fetus. Here, we review recent insights into how the placenta responds to changes in the maternal environment and discuss possible mechanisms by which the placenta mediates fetal programming. In IUGR (intrauterine growth restriction) pregnancies, the increased placental vascular resistance subjects the fetal heart to increased work load, representing a possible direct link between altered placental structure and fetal programming of cardiovascular disease. A decreased activity of placental 11β-HSD-2 (type 2 isoform of 11β-hydroxysteroid dehydrogenase) activity can increase fetal exposure to maternal cortisol, which programmes the fetus for later hypertension and metabolic disease. The placenta appears to function as a nutrient sensor regulating nutrient transport according to the ability of the maternal supply line to deliver nutrients. By directly regulating fetal nutrient supply and fetal growth, the placenta plays a central role in fetal programming. Furthermore, perturbations in the maternal compartment may affect the methylation status of placental genes and increase placental oxidative/nitrative stress, resulting in changes in placental function. Intervention strategies targeting the placenta in order to prevent or alleviate altered fetal growth and/or fetal programming include altering placental growth and nutrient transport by maternally administered IGFs (insulin-like growth factors) and altering maternal levels of methyl donors.
Reference136 articles.
1. The developmental origins of insulin resistance;Barker;Horm. Res.,2006
2. Living with the past: evolution, development, and patterns of disease;Gluckman;Science,2004
3. Fetal, infant, and childhood growth are predictors of coronary heart disease, diabetes, and hypertension in adult men and women;Osmond;Environ. Health Persp.,2000
4. Fetal and infant growth and impaired glucose tolerance at age 64;Hales;Br. Med. J.,1991
5. Glucose tolerance in adults after prenatal exposure to famine;Ravelli;Lancet,1998
Cited by
418 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献