High affinity binding of anti-oestrogen to the chick liver nuclear oestrogen receptor

Author:

Lazier Catherine B.1,Jordan V. Craig2

Affiliation:

1. Department of Biochemistry, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4H7

2. Department of Human Oncology, The University of Wisconsin, Madison, WI 53792, U.S.A.

Abstract

Tamoxifen is a potent inhibitor of specific oestrogen-induced yolk protein synthesis by chicken liver. The oestradiol receptor in salt extracts of liver nuclei from oestrogen-treated chicks has a Kd for oestradiol of 0.7±0.2nm. Tamoxifen and its metabolite, monohydroxytamoxifen, compete for binding to the salt-soluble nuclear receptor with Ki values of 2.6 and 0.1nm respectively. The anti-oestrogens show much less inhibition of [3H]oestradiol binding when assays are carried out using intact nuclei. The competition by unlabelled oestradiol for [3H]oestradiol binding to receptor is identical in both salt extracts and intact nuclei. This suggests that intact nuclei contain components which bind anti-oestrogens, but not oestradiol. While tamoxifen and desmethyltamoxifen will readily dissociate from the salt-soluble nuclear oestrogen receptor, monohydroxytamoxifen does not dissociate under the conditions generally used for exchange assays. A modified assay was developed in which 60–70% of monohydroxytamoxifen-bound sites were shown to be exchangeable for [3H]oestradiol. Soluble receptor preparations were first incubated in a 1.7% charcoal suspension at 37°C for 15min before assay of specific oestradiol binding. This technique was used in examining the effects of tamoxifen and monohydroxytamoxifen given in vivo on the nuclear oestrogen receptor concentration. Despite their 30-fold difference in binding affinity for the receptor, both anti-oestrogens increase nuclear receptor levels to about the same degree. When given with oestradiol, both compounds have the same apparent partial inhibitory effect on the oestrogen-induced increase in nuclear receptor. These data are consistent with the metabolic hydroxylation of tamoxifen before binding to the hepatic oestrogen receptor.

Publisher

Portland Press Ltd.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3