Characterization and organization of the genes encoding the A-, B- and C-chains of human complement subcomponent C1q. The complete derived amino acid sequence of human C1q

Author:

Sellar G C1,Blake D J2,Reid K B1

Affiliation:

1. M.R.C. Immunochemistry Unit, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU

2. Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, U.K.

Abstract

A partial cDNA clone for the A-chain of human complement subcomponent C1q was isolated from a monocyte library. Use of the A-chain cDNA clone, and a previously characterized B-chain cDNA clone [Reid (1985) Biochem. J. 231, 729-735] allowed the isolation of overlapping cosmid clones that were shown to contain the genes encoding the A-, B- and C-chains of human C1q. The three genes were found to be aligned, 5′→3′, in the same orientation, in the order A-C-B on a 24 kb stretch of DNA on chromosome 1p. The A-, B- and C-chain genes are approx. 2.5, 2.6 and 3.2 kb long respectively, and each contains one intron, located within a codon for a glycine residue found half-way along the collagen-like region present in each chain. These glycine residues are located just before the point where the triple-helical portions of the C1q molecule appear to bend when viewed in the electron microscope. Southern-blot analyses indicated that there is only one gene per chain, and preliminary examination of genomic DNA from several C1q-deficient patients showed no evidence for major deletions or insertions within the A-, B- or C-chain genes. The DNA sequence of the coding region of the C-chain gene allows the completion of the entire derived amino acid sequence for the human C1q molecule. The globular, C-terminal, regions of the chains of C1q show a strong similarity in amino acid sequence to the non-collagen-like, C-terminal, regions of the type VIII and type X collagens, indicating structural and evolutionary relationships between these three molecules.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3