Abstract
Extracts of trimethylamine-grown W6A and W3A1 (type M restricted facultative methylotrophs) contain trimethylamine dehydrogenase whereas similar extracts of Bacillus PM6 and Bacillus S2A1 (type L restricted facultative methylotrophs) contain trimethylamine mono-oxygenase and trimethylamine N-oxide demethylase but no trimethylamine dehydrogenase. Extracts of the restricted facultatives and of the obligate methylotroph C2A1 contain hexulose phosphate synthase-hexulose phosphate isomerase activity; hydroxypyruvate reductase was not detected. Neither the restricted facultatives nor the obligates 4B6 and C2A1 contain all the enzymes of the hexulose phosphate cycle of formaldehyde assimilation as originally proposed by Kemp & Quayle (1967). Organisms PM6 and S2A1 lack transaldolase and use a modified cycle involving sedoheptulose 1,7-diphosphate and sedoheptulose diphosphatase. The obligates 4B6 and C2A1, and the type M organisms W6A and W3A1, use a different modification of the assimilatory hexulose phosphate cycle involving the Entner-Doudoroff-pathway enzymes phosphogluconate dehydratase and phospho-2-keto-3-deoxygluconate aldolase. The lack of fructose diphosphate aldolase and hexose diphosphatase in these organisms may be a partial explanation of their restricted growth-substrate range. Enzymological evidence suggests that all the obligates and the restricted facultatives use a dissimilatory hexulose phosphate cycle to accomplish the complete oxidation of formaldehyde to CO2 and water.
Subject
Cell Biology,Molecular Biology,Biochemistry
Cited by
85 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献