Inhibition of ferrochelatase during differentiation of murine erythroleukaemia cells

Author:

Fadigan A,Dailey H A

Abstract

During dimethyl sulphoxide-induced differentiation of DS-19 murine erythroleukaemia (MEL) cells, the activity of the terminal enzyme of the haem-biosynthetic pathway, ferrochelatase (protohaem ferrolyase, EC 4.99.1.1), is thought to be the rate-limiting step for haem production. Differentiation of induced MEL cells in the presence of exogeneously supplied protoporphyrin IX showed that total haem production was affected by added porphyrin only after 48 h. These data suggest that iron insertion, the terminal step, is rate-limiting during the first 48 h of differentiation. Addition of low levels of diethoxycarbonyl-1,4-dihydro-2,4,6-trimethylpyridine to differentiating cultures resulted in decreased haem production and decreased ferrochelatase activity. N-Methylprotoporphyrin at nanomolar concentrations also strongly inhibited ferrochelatase activity, but had no inhibitory effect on cellular haem production. The bivalent cations Co2+, Cd2+ and Mn2+ were tested for their effect on haem production and ferrochelatase activity. All three metals were found to inhibit both haem formation and ferrochelatase activity, with Mn2+ being the strongest effector. These data, together with those previously published, suggest that the terminal step in haem biosynthesis is rate-limiting during the early stages of differentiation in MEL cells.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3