Dependence of urokinase-type-plasminogen-activator induction on cyclic AMP-dependent protein kinase activation in LLC-PK1 cells

Author:

Jans D A,Resink T J,Hemmings B A

Abstract

The activation of cyclic AMP-dependent protein kinase (cAMP-PK) in vivo was studied in LLC-PK1 pig kidney cells and the mutant cell lines M18 and FIB5, which have total levels of cAMP-PK catalytic-subunit and regulatory-subunit activities comparable with those of parental cells. The extent of cAMP-PK activation (release of active catalytic subunit from the holoenzyme) was directly correlated with the cellular cyclic AMP concentration in LLC-PK1 cells. In LLC-PK1 cells, as well as in the mutants M18 and FIB5, the extent of the induction of urokinase-type plasminogen activator (uPA) by the cyclic AMP-mediated effectors calcitonin, vasopressin and forskolin was directly correlated with the levels of activated catalytic subunit. The ‘receptorless’ mutant M18, which is impaired in calcitonin- and vasopressin-receptor function, did not show any activation of cAMP-PK or uPA production in response to either hormone, whereas cAMP-PK and uPA responses to forskolin were about 35% higher than in parental cells. Analysis of the FIB5-cell line revealed a lesion affecting the regulation of adenylate cyclase activity, whereby basal and stimulated (both receptor- and non-receptor-mediated) adenylate cyclase levels were less than 36% of those in parental cells. The activation of cAMP-PK in response to cyclic AMP effectors was similarly reduced, and uPA induction was concomitantly lower than that in parental cells. The results demonstrate the dependence of uPA induction by cyclic AMP effectors on dissociation of the cAMP-PK holoenzyme, implying the importance of activated free cAMP-PK catalytic subunit in this process. Thus it is concluded that the mutations in the cellular cyclic AMP-generating apparatus of the M18 and FIB5 cell lines impair uPA induction by preventing cAMP-PK activation.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3