Identification of a glycolysis-related lncRNA prognostic signature for clear cell renal cell carcinoma

Author:

Ma Wei1,Zhong Manli2,Liu Xiaowu3ORCID

Affiliation:

1. Department of Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China

2. College of Life and Health Sciences, Northeastern University, Shenyang, China

3. Department of Urology, The First Affiliated Hospital of China Medical University, Shenyang, China

Abstract

Abstract Background: The present study investigated the independent prognostic value of glycolysis-related long noncoding (lnc)RNAs in clear cell renal cell carcinoma (ccRCC). Methods: A coexpression analysis of glycolysis-related mRNAs–long noncoding RNAs (lncRNAs) in ccRCC from The Cancer Genome Atlas (TCGA) was carried out. Clinical samples were randomly divided into training and validation sets. Univariate Cox regression and least absolute shrinkage and selection operator (LASSO) regression analyses were performed to establish a glycolysis risk model with prognostic value for ccRCC, which was validated in the training and validation sets and in the whole cohort by Kaplan–Meier, univariate and multivariate Cox regression, and receiver operating characteristic (ROC) curve analyses. Principal component analysis (PCA) and functional annotation by gene set enrichment analysis (GSEA) were performed to evaluate the risk model. Results: We identified 297 glycolysis-associated lncRNAs in ccRCC; of these, 7 were found to have prognostic value in ccRCC patients by Kaplan–Meier, univariate and multivariate Cox regression, and ROC curve analyses. The results of the GSEA suggested a close association between the 7-lncRNA signature and glycolysis-related biological processes and pathways. Conclusion: The seven identified glycolysis-related lncRNAs constitute an lncRNA signature with prognostic value for ccRCC and provide potential therapeutic targets for the treatment of ccRCC patients.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3