Pathway analysis of NAD+ metabolism

Author:

de Figueiredo Luis F.12,Gossmann Toni I.34,Ziegler Mathias4,Schuster Stefan1

Affiliation:

1. Department of Bioinformatics, Friedrich Schiller University Jena, Ernst-Abbe-Pl. 2, 07743 Jena, Germany

2. PhD Program in Computational Biology, Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal

3. School of Life Sciences, University of Sussex, Brighton BN1 9QG, U.K.

4. Department of Molecular Biology, University of Bergen, Thormøhlensgate 55, 5008 Bergen, Norway

Abstract

NAD+ is well known as a crucial cofactor in the redox balance of metabolism. Moreover, NAD+ is degraded in ADP-ribosyl transfer reactions, which are important components of multitudinous signalling reactions. These include reactions linked to DNA repair and aging. In the present study, using the concept of EFMs (elementary flux modes), we established all of the potential routes in a network describing NAD+ biosynthesis and degradation. All known biosynthetic pathways, which include de novo synthesis starting from tryptophan as well as the classical Preiss–Handler pathway and NAD+ synthesis from other vitamin precursors, were detected as EFMs. Moreover, several EFMs were found that degrade NAD+, represent futile cycles or have other functionalities. The systematic analysis and comparison of the networks specific for yeast and humans document significant differences between species with regard to the use of precursors, biosynthetic routes and NAD+-dependent signalling.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 52 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3