Studies on N-acetylneuraminic acid aldolase

Author:

Barnett J. E. G.1,Corina D. L.1,Rasool G.1

Affiliation:

1. Department of Physiology and Biochemistry, University of Southampton, Southampton SO9 5NH, U.K.

Abstract

N-Acetylneuraminic acid aldolase from Clostridium perfringens was irreversibly inactivated by 1mm-bromopyruvate with a half-life of 4.2min at pH7.2 and 37°C. The rate of inactivation was diminished in the presence of pyruvate but not with N-acetyl-d-mannosamine, indicating that the inhibitor acted at, or close to, the pyruvate-binding site. The apparent Ki for bromopyruvate, calculated from the variation of half-life with inhibitor concentration, was 0.46mm, compared with a competitive Ki 3.0mm for pyruvate. Incubation of the enzyme with radioactive bromopyruvate gave a radioactive, enzymically inactive, protein in which the bromopyruvate had alkylated cysteine residues. Incubation of the enzyme with radioactive pyruvate, followed by reduction with sodium borohydride, led to inactivation of the enzyme and binding of the pyruvate to the protein by reduction of a Schiff's base initially formed with the ∈-amino group of a lysine residue; only one-twentieth as many pyruvyl residues were bound by this method, showing that bromopyruvate is not specific for the active site. After protection of the enzyme active site with pyruvate, treatment with unlabelled bromopyruvate and dialysis, the enzyme retained 72% activity. When this treated enzyme was separately incubated with radioactive bromopyruvate, or radioactive pyruvate followed by sodium borohydride, the ratio of radioactive pyruvyl residues bound by the two methods was 2.3:1. After reduction and hydrolysis of the bromopyruvate-treated enzyme, the only detectable radioactive amino acid derivative was chromatographically and electrophoretically identical with S-(3-lactic acid)-cysteine. The enzyme was fully active in the presence of EDTA and was not stimulated by bivalent metal ions. It was strongly inhibited by silver and mercuric ions. The apparent molecular weight, determined by Sephadex chromatography, was 250000. A mechanism of action is proposed for the enzyme. Bromopyruvate reacts rapidly at pH6.0 with thiol-containing amino acids. Cysteine appears to react anomalously.

Publisher

Portland Press Ltd.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3