The bacterial oxidation of picolinamide, a photolytic product of Diquat

Author:

Orpin C. G.1,Knight M.1,Evans W. C.1

Affiliation:

1. Department of Biochemistry and Soil Science, University College of North Wales, Bangor, Caerns., U.K.

Abstract

The pathway of oxidation of picolinamide (pyridine-2-carboxamide) by a Gram-negative rod has been elucidated. Under conditions of high pH, restricted aeration and high substrate concentration, whole cells released 2,5-dihydroxypyridine into culture supernatants. Sodium arsenite at 5mm caused whole cells to accumulate 6-hydroxypicolinate, and, at 1mm, pyruvate, in culture media. Whole cells oxidized picolinamide, picolinate, 6-hydroxypicolinate, maleamate and maleate without lag. Cell-free extracts converted picolinamide into picolinate, and hydroxylated picolinate to 6-hydroxypicolinate. The hydroxylase was particulate, but could be solubilized by ultrasonic treatment; it required NAD+ for activity, and did not require molecular oxygen. 2,5-Dihydroxypyridine was converted into maleamate and formate by an oxygenase requiring GSH and Fe2+. Maleamate was deamidated to maleate, and maleate isomerized to fumarate, by unsupplemented extracts.

Publisher

Portland Press Ltd.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3