Affiliation:
1. Althouse Laboratory, Department of Biochemistry, The Pennsylvania State University, University Park, PA 16802, U.S.A.
Abstract
The biosynthesis of carnitine in the rat was studied by following the metabolism of two radioactive derivatives of asialo-fetuin. The first contained 14C-labelled methyl groups covalently bound to the 6-N-amino fraction of its lysine residues as 6-N-monomethyl- and dimethyl-lysine. By treating this protein with iodomethane, a second derivative was produced in which the radioactivity was preferentially incorporated as 6-N-[Me-14C]-trimethyl-lysine. These desialylated glycoproteins, like other asialo-proteins, were immediately cleared from the blood by rat liver. Within hepatocyte lysosomes, the 14C-labelled proteins were rapidly hydrolysed, producing free amino acids containing the various 6-N-[Me-14C]methylated lysine residues. The radioactive amino acids crossed the lysosomal membrane and were further metabolized in the cytosol. Carnitine was the major radioactive metabolite detected in extracts of the rat carcass and liver after intravenous injection of 6-N-[Me-14C]trimethyl-lysine-labelled asialo-fetuin. Within 3h, at least 34.6% of the trimethyl-lysine in the administered protein was converted into carnitine. Similarly, an isolated perfused rat liver converted 30% of the added peptide-bound trimethyl-lysine into carnitine within 90 min. On the other hand, in numerous attempts we failed to detect radioactive carnitine in both rat liver and carcass between 20 min and 22 h after injection of 6-N-[Me-14C]-monomethyl- and -dimethyl-lysine-labelled asialo-fetuin. These data provide evidence for a pathway of carnitine biosynthesis that involves trimethyl-lysine as a peptide-bound precursor as proposed by R.A. Cox & C.L. Hoppel [(1973) Biochem. J. 136, 1083-1090] and V. Tanphaichitr & H.P. Broquist [(1973) J. Biol. Chem. 248, 2176-2181]. The findings also show that rat liver can synthesize carnitine without the aid of other tissues, but cannot convert free partially methylated lysines into trimethyl-lysine.
Subject
Cell Biology,Molecular Biology,Biochemistry
Cited by
102 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献